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THE OBLIQUE REFLECTION OF A RAYLEIGH WAVE
FROM A CRACK TIP

L. B. FREUNOt

Brown University, Providence, Rhode Island 02912

Abstract-The reflection of a free-surface Rayleigh wave from the edge of a half-plane crack in an unbounded
isotropic elastic solid is considered. The time-harmonic surface wave, propagating on one face of the crack, is
obliquely incident on the edge so that the problem is three-dimensional. Application of a displacement represen­
tation theorem reduces solution of the problem to solution of an integral equation, which is solved by application
of Laplace transform methods and the Wiener-Hopf technique. The transformed displacement has a simple pole
corresponding to the reflected surface waves, and the residues are determined. The amplitudes and phases of the
reflected surface waves on both faces of the crack have been calculated numerically, and are plotted as functions
of the angle of incidence. Energies of the reflected waves are also shown in graphs.

INTRODUCTION

IT HAS been known for some time that elastic surface waves may be guided over large
distances by forming waveguides on surfaces of elastic materials in certain ways. In a
recent paper [1], a method was introduced by which approximate dispersion relations for
a class of surface waveguides could be obtained. In order to apply the method, the results
of an auxiliary reflection problem must be available. Each edge of a surface waveguide
may be viewed as a discontinuity in surface impedance. The auxiliary problem which
must be solved is then the reflection of a straight-crested surface wave from one edge of
the waveguide, that is, from a discontinuity in surface impedance, assuming the other edge
of the guide to be absent. The solution of this problem consists of the determination of
the amplitude and phase of the reflected surface wave as a function of angle of incidence
of the incident wave.

All surface waveguides which have been proposed are formed by modifying the plane
surface of an elastic solid [2]. For example, a thin film of material having certain desirable
characteristics may be deposited either inside or outside the region of the guide [3]. It
appears that a slit (an open crack of finite width and indefinite length) running through
the interior of an elastic solid can also act as a surface waveguide. The surface waves, of
course, propagate on the faces of the slit along its length. In order to determine the dis­
persion relation of this guiding configuration, it is necessary to first study an auxiliary
reflection problem, which is the purpose here. The problem considered is the oblique
reflection of a surface wave, propagating on one face of a half-plane crack, from the edge
of the crack. The study of the waveguide itself will be taken up in a subsequent paper.
The simpler problem of a normally incident surface wave, which is a special case of the
problem considered here, was studied in [4].
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SOLUTION FOR REFLECTED SURFACE WAVES

The problem of an unbounded homogeneous elastic solid containing a semi-infinite
crack is considered. Cartesian coordinates Xj (x, y, z) are prescribed in the body in such
a way that the crack occupies the half-plane z = 0, x < 0; see Fig. 1. The crack is assumed
to remain open at all times, that is, the faces of the crack are taken to be free of traction.
The index notation of Cartesian tensor analysis is used in the following analysis, and the
range of the indices is usually 1,2,3.

In the absence of body forces, the equation governing the components of the dis­
placement vector Uj(x, t) is

i = 1,2,3 (1)

where p is mass density. For the isotropic material being considered, Cjjk/ can be expressed
in terms of the Lame constants A and J1 as

Cijk/ = Abi;-bk/+J1(bikbj/+bi/bjk)' (2)

The boundary conditions which must be satisfied for the faces of the crack to be traction­
free are

x < 0, i = 1,2,3 (3)

where the notation o± means that the indicated stress components must vanish as z
approaches zero through positive or negative values. The stress matrix is related to the
displacements by
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FIG. I. The physical system viewed along the negative y-axis and the positive z-axis.
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The excitation is in the form of a surface wave on the face of the crack z = 0 + . A steady­
state situation is assumed to exist with the surface wave, harmonic in time with circular
frequency ro, obliquely incident on the edge of the crack at x = z = O. Making use of the
notation for the discontinuity of a function across z = 0,

i1U~x, y, t) == V ~x, y, 0+, t)- Ui(x, y, 0-, t),

the discontinuity in the incident disturbance is written as

(5)

x<O (6)

(7)

where Ai is an amplitude, and IX and Pare components of the surface wavenumber vector.
If y is the wavenumber of Rayleigh waves, then IX = Ycos e and P= ysin e. Any two
components of Ai may be expressed in terms of the third, for example,

PAl = IXA2 , iXA l +PA 2 = A 3r
r = - 2iy2(y2 - K;)! j(2y2- K;)

where Kb is the wavenumber for shear waves. Therefore, once the frequency and direction
of propagation of a Rayleigh wave are specified, the wave can be completely characterized
by a single amplitude. (Since amplitudes here are taken to be complex, this means two
real quantities must be specified, for example, a real amplitude and a real phase angle.)

It is assumed that the scattered field has the same harmonic time-dependence as the
incident wave. Furthermore, the fact that the physical system is invariant with respect to
translation in the y-direction makes it possible to write the dependence of displacement
and stress on y in the form

Ui(X, y, z, t) = Ui(X, z) ei(rot- Py),

~ , t) - , ) i(rot-Py)
"'-iJ'X, y, Z, - (liJ'X, Z e ,

(8)

(9)

(10)

The problem is thus reduced to the determination of the amplitudes Ui and (lij in the
x, z-plane.

A very useful result in solving for these amplitudes is a displacement representation
theorem due to de Hoop [5]. In Section 4 of [5] the problem of an elastic solid bounded
by a closed surface is considered. Time-dependent boundary data are specified on the
surface in such a way that the elastodynamic problem is well-posed. It is then shown
that the displacement at any interior point and at any time can be represented as a sum
oftwo surface integrals over the bounding surface, plus a body force term which is neglected
here. A similar representation was derived by Krupradze in chapter 1 of [6] for steady­
wave problems.

A representation theorem of use in solving the problem at hand may be derived from
the result in [5]. Since this representation is valid for any time-dependence, the simple
harmonic time-dependence may be made explicit and some integrals over time may be
evaluated. Suppose that the elastic solid is a long cylinder whose lateral surface is generated
by a line parallel to the y-axis moving along a curve C in the x, z-plane. The surface of
the body is then made up of the cylindrical surface plus the region of the planes y = ±L
interior to C, where L is large. In view of (8HlO),.the dependence of all fields on y may
then be made explicit in the representation formula, and the integration with respect
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to y may be performed. The result of this tedious but straightforward calculation is, for
L --+ 00,

Ui(~) = Ie Cjklmrii~, s)Ut,m(s)nk(s) ds

+-00 r Cjklmril(~' s)uis)nk(s) ds
xmJc

(11)

where ~ = (x, z) is any point interior to C, s = (X., zs) is a coordinate along C, nk is the
outward normal to C, and

1 { 0
2

• 0 . 0 2 }
rii~,s) = -22 --00 +IPb i2 -0 +ZPb j2 -0 +P bi2bj2

nw Xi~ ~ ~

. {KOPt.ar) - K O(A'br)}+ K;bijKO()~br),

r = [(x s -X)2 +(zs-Z)2J!.

(12)

(13)

In (12), K o is the modified Bessel function of the second kind, Ka is the wavenumber of
dilatational waves, and

(14)

(15)

For the problem being considered here, the curve C is shown in Fig. 1. In view of
the boundary conditions (3), the representation (11) reduces to

o fO
Ui(X, z) = --0 Cj3ImriJ{X, Z, xs' O)duixs) dxs·

Xm -00

Relation (15) has exactly the same form as the representation formula derived in [4].
The array r ij is quite different in this case, however, because (15) is a special case of a
three-dimensional representation while equation (12) of [4J is strictly a two-dimensional
result.

The general scheme for obtaining the reflected surface waves on the faces of the crack,
due to the incident surface wave, is the following. A bilateral Laplace transform is defined
over the spatial variable x. This transform is then applied to the representation formula (15),
to the stress-displacement relation (4), and to the boundary conditions (3). Then, working
exclusively with transformed quantities, the representation formula is substituted into
the stress-displacement relation, and the boundary conditions are imposed. The result of
these steps is a system of Wiener-Hopf type equations. In general, such systems of
functional equations cannot be solved [7]. For the particular case being studied here,
however, the system is degenerate and the equations can be combined in such a way as
to yield three uncoupled Wiener-Hopf equations of the standard type.

The bilateral Laplace transform of a function is denoted by a bar over the function
and is defined by

(16)

The same reasoning employed in [1,4J suggests that the inversion path of integration
for (16) is the imaginary axis, approached from the right in the lower half-plane and from
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the left in the upper half-plane, as shown in Fig. 2 for the case Kb > {3 > Ka • Furthermore,
transforms of functions which represent outgoing waves and which vanish on the half-line
x > 0 (x < 0) are taken to be analytic on, and to the left (right) of, the inversion path.

The transform is first applied to (15), making use of the familiar result for transforming
a convolution integral. The result is

ia A-PLANE

-ia

FIG. 2. The complex A-plane for the case when A. is real and Ab is imaginary, including the transform
inversion path.

where

GilA, z) = - f:oo e-.<xCj3Imril,m(X, z, 0, 0) dx

.1Ui(A) = foo e-.<x.1ui(X) dx.

Application of the transform to the stress-displacement relation yields

ii 13/J1. = Ul,3+ AU3

ii23/J1. = U2,3 - i{3U3

ii33/J1. = (k2_2)(AU1-i{3U2)+k2U3,3

where k2 = Kt!K;. Finally, the transformed boundary conditions are

iii3(A, o±) = J1.R;(A),

(18)

(19)

(20)

(21)

(22)

(23)

where R i is an unknown function analytic in the right half of the A-plane. Taking R i to
be independent of whether z = 0 is approached through positive or negative values
implies that the traction is continuous across z = 0 for x > O.
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The system of Wiener-Hopf equations is obtained by substituting (17) and (23) into
(20H22), and the result is

where

'P II = (4A2pq-4A.2q2_K~A~)

'P 12 = (- 4pq +4q2+ K~)iIU

'P 13 = 'P 31 = 'P23 = 'P32 = 0

'P 21 = 'P 12

'P22 = (-4f32pq+4f32q2+K:+K~A2)

'P33 = qd(A)jp

p = (A~-A.2)+, q = (A~-A2)+

d(A) = 4(A2_f32)pq+(2A.2+K~-2f32)2.

(24)

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

(26)

(27)

The branches of p and q selected are those for which Re (p) ~ 0 and Re (q) ~ 0 every­
where in the A-plane. The function d(A) is the modified Rayleigh wave function introduced
in [1]. The equation d(A) = 0 has two roots in the cut A-plane at A = ± icc These roots
are indicated in Fig. 2.

It is helpful at this point to write ilu; as a sum of two terms

(28)

which separates out the discontinuity in displacement due to the incident wave. The
function L; is the transform of the discontinuity in u; across z = 0 due to outgoing waves
only and this function is, therefore, analytic in the left half-plane. It is also convenient
to introduce the auxiliary function D(A) defined by

(29)

where K = 2(K~ - K~). This function has neither zeros nor poles in the cut A-plane, and
D ~ 1 as IAI ~ 00. A product factorization of D into sectionally analytic functions D +

and D_, in a form which is useful here, has been presented in [1]. As usual, the subscript
plus or minus denotes the domain of analyticity, the plus (minus) referring to the right (left)
half-plane.

The three uncoupled Wiener-Hopf type equations are now obtained from (24). In
view of (25c), one of these equations is obtained by setting i = 3 in (24), with the result

(30)

The second of these equations is obtained by taking the sum of if3 times (24) with i = 1
and A times (24) with i = 2, with the result

(31)

Clearly, the left side of (31) is a function which is analytic in the right half-plane. Further­
more, the quantity in parenthesis on the right side of (31) is the sum of a function which
is analytic in the left half-plane plus a function whose only singularity is a simple pole at
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(33)

A = - irx. The relation (31) is thus a very common form ofa Wiener-Hopfequation. Finally,
the third equation is obtained by taking the sum of A times (24) with i = 1 plus - ifJ times
(24) with i = 2, with the result

2K;q[AR1(A) - ifJR2(A)] = - d(A)[ - A~U1(A)+ ifJ~U2(A)]. (32)

Relation (32) has essentially the same form as (31).
The steps which are followed in determining ~U3 from (30) are identical to those

discussed in [4], and only the result is included here,

~U3 = A3(2irx)p _(A)D -( - irx) .
(A2+ rx2)p _( - irx)D _(A)

To derive (33) it is necessary to factor p into a product of sectionally analytic function
p+P-, where the plus and minus signs indicate the same domains of analyticity as before.
The result of the factorization is

(34)

with a similar result holding for q.
In the initial stages of solution, the remaining two Wiener-Hopf equations may be

approached separately and in the usual way, for example, as outlined in [4]. Certain
functions are factored into sectionally analytic functions and each equation is rewritten
in such a way that opposite sides of the equation are analytic functions in complementary
half-planes. By an analytic continuation argument, it is concluded that each side is one
and the same entire function. It can often be shown by applying "uniqueness conditions",
as is the case here, that the entire function has algebraic behavior of a certain order at
infinity and is therefore a polynomial function of known order. The problem then remains
of determining the unknown coefficients of this polynomial function.

For the problem being considered here, it turns out that the polynomials obtained
for both (31) and (32) are simply constants. This follows from imposition of the uniqueness
condition requiring the displacement to be continuous and the strain energy to be integrable
at the edge of the crack. It is found that, in order to determine the values of these constants,
the two equations must be considered together. Since this feature of interaction is the
only novel aspect of the solution of the problem at hand, only those steps relating to this
feature are outlined.

If the steps outlined above are carried out for equations (31) and (32), the following
results are obtained,

ifJ~U1 +A~U2 = -Edq-(A),

- . - q_(A) .
A~Ul-lfJ~U2 = (A2 + rx2)D_(A) {(A+ Irx)E2-K},

K = - 2rxrA 3D_( - irx)/q _( - irx),

(35)

(36)

(37)

where E 1 and E 2 are the aforementioned unknown constants. Together (35) and (36)
form a system of linear algebraic equations for ~U1 and ~U2' The determinant of the
coefficients of this system is (fJ2 - A2). Therefore, for all values of A such that A2 :F fJ2 the
system of equations has a unique nontrivial solution. When A2 = fJ2, however, the system
ofequations has no solution, in general. This undesirable result can be avoided by requiring
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that the coefficient matrix and the augmented matrix of the system have the same rank
for all Ie and, in particular, for}. = ±[3. This is essentially a compatibility condition on
the right sides of (35) and (36) which requires that, for A = ± [3, the right side of (35) must
equal ± i times the right side of (36). This yields two equations which are linear in E 1 and
E2 with known constant coefficients. The solution of these equations completes the solution
of the Wiener-Hopf problem.

The constants Eland ~may b~ound by an alternate scheme. The equations (35)
and (36) are first solved for i1u 1and i1uz . The solution shows that both i1Ul and i1uz have
apparent simple poles at Ie = ± [3. From (28), it is clear that neither of these functions may
have a pole at }, = - {3, since the only admissible singularity in the left half-plane is at
A = - irx. Furthermore, the presence of a pole at A = [3 implies that the discontinuity in
displacement across z = 0 increases exponentially with distance from the edge of the
crack. Such a result is physically inadmissible. The net result is that the residues of the
apparent poles of i1u1 and i1U2 at }, = ± [3 must vanish. This yields four equations, only
two of which are independent, for the determination of Eland E2. These equations are,
of course, the same as the equations referred to in the preceding paragraph. The result of
solving them is

E 1 = 2i[3K~K/y2c,

Ez = K[D+([3)(Ab-[3)+D_([3)(Ab+[3)]/C,

C = [D +([3)(}'b - [3)([3 + irx) - D _([3)(Ab+[3)([3 - irx)].

(38)

(39)

(40)

(41)

This essentially completes the outline of the steps followed in determining the trans­
formed displacements. The constants E 1 and Ez given in (38) and (39) may be substituted
int~5) and (36). The latter equations, along with (33), determine i1Ui. The expressions
for i1u; may then be substituted into (17) which yields the Laplace transform of the displace­
ment, which must be inverted. Since attention here is focused primarily on the reflected
surface waves on z = O±, and since a surface wave is completely characterized by a single
component of surface displacement only the z-component of surface displacement is
considered here. The result of the analysis outlined above is

_ ± irxA3D_(-irx) { p-(t,) ir(2pq-2q2_K~). }
U3(A,0 ) = (12+ Z)D (') ± ( .)+ z (A) ( .) [(A+IIX)Ez/K-1] .

/I. rx _ A p_ -lrx Kbq+ q_ -IIX

The displacement in the z-direction on z = O± is then found by inverting (41),

1 fiOO
U (x O±) = - U (A O±)e.lx dA
3' 2 . 3'

1Cl -;00
(42)

where the inversion path is shown in Fig. 2. The integrand of (41) has branch points at
A = ±Aa , ± Ab and simple poles at A = ± irx. For x > 0, the path of integration of (42)
may be deformed into the left half-plane, with the result that u3(x, O±) may be expressed
as the sum of the residue at A = - irx plus a branch line integral. The latter represents the
body waves in x > 0 arising from diffraction. For z = 0+, the residue represents a
surface wave which exactly cancels the incident surface wave for x > 0, while for z = 0 - ,
the residue is identically zero. For x < 0, the path of integration may be deformed into
the right half-plane, with the result that U 3 may be expressed as the sum of the residue at
A = irx plus a branch line integral. As before, the latter represents the body waves arising
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from diffraction. The residue, on the other hand, represents the reflected surface waves on
z = o± which are the waves of interest here. Denoting the residue by u3(x, O±), the reflected
surface wave amplitudes are given explicitly by

All quantities in (43) have been explicitly defined except the ratio D_( - irx)/D -(irx), which
is given in [IJ. The reflected surface waves are then described by the real parts of

(44)

NUMERICAL RESULTS AND DISCUSSION

As has been shown, the transformed solution of this problem is quite complicated
and only expressions for the surface wave contribution can be extracted for direct numerical
evaluation. The qualitative features of the complete wave motion associated with the
reflection process are apparent from the analysis and the numerical results, however.
For any angle of incidence (J the incident surface wave gives rise to reflected surface waves
on z = O±. The situation is more complex than the elementary reflection process, however,
because of the possibility of mode conversion from the surface wave mode to a body
wave mode upon reflection. If such mode conversion occurs, then the energy carried away
from the edge of the crack in the form of surface waves is less than the energy transported
to the edge by the incident surface wave. In contrast, the elementary reflection process is
governed by a conservation of energy at the reflecting boundary.

The ratios of the amplitudes of the reflected surface waves to the amplitude of the
incident wave versus angle of incidence has been calculated for the special case of Poisson's
ratio of 0·25. The result is shown in Fig. 3. The wavenumbers for this case are related by
K; = 3K; and y2 = 3·549K;. Figure 4 shows the phases of the reflected surface waves,
assuming the phase of the incident wave to be zero. A parameter which is a convenient
measure of the relative energy ofa surface wave can be obtained by squaring the magnitude
of the z-component ofdisplacement ofthe surface wave. Assuming the energy ofthe incident
wave to be unity, the relative energy of each of the reflected surface waves is shown in
Fig. 5. The sum of these relative energies is also shown in Fig. 5.

For small values of (J the apparent wavenumber pof the incident surface wave along
the edge of the crack is greater than the larger wavenumber of body waves. Equivalently,
the apparent wave speed of the incident wave along the edge w/P is less than the slower
body wave speed. Consequently, only localized, nonpropagating body wave modes are
excited near the crack tip. All energy transported to the edge by the incident wave must
be carried away by the reflected surface waves. This is indeed the case, as can be seen from
Fig. 5. Even though the partition of energy of the two reflected surface waves varies with (J,

the sum of the energies is unity for sufficiently small (J, that is, for P> Kb' For the numerical
values used here p = Kb at (J = 23·2°, which is indicated in the figures.

When p< Kb' the apparent signal speed along the edge of the crack is greater than the
shear wave speed. Propagating shear wave modes are therefore excited, which carry some
energy away from the edge of the crack. This is born out by Fig. 5, which shows that for
p < Kb the total energy of the reflected waves is less than the energy of the incident wave.
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The surfaces of constant phase of these shear waves are right circular cones whose axes
coincide with the y-axis. When fJ < K a , propagating dilatational modes are also excited.
The value of f) at which fJ = K a is approximately 57·9°.

In this paper, only an incident surface wave on z = 0+ has been considered. Results
for other cases may be easily deduced from results for this case, however. For example,
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suppose a surface wave is propagating on z = 0- and is obliquely incident on the edge
of the crack with angle of incidence e. Furthermore, suppose that the z-component of
displacement of the incident wave is the same as for the original problem. This does not
impose a restriction on the modified problem, but merely fixes the zero phase line so that
a direct correlation can be made. The results for the modified problem may then be obtained
by replacing A2 and A 3 by -A2 and -A3 • Then, in view of(5), the reflected surface waves
in the modified problem are given by (43) with the sign of the first term in brackets being
changed. That is, if vi(x, z) is the solution of the modified problem, then

vi(x,O±) = ui(x,O+). (45)

Similarly, if the z-component of the displacement of the incident wave on z = 0- is n
radians out of phase, then the solution is obtained by replacing A 3 by - A 3 in the original
problem. If wi(x, z) is the solution of this second modified problem, then

(46)

Any symmetric or antisymmetric motions (with respect to z = 0) may be constructed
from (45) and (46). For example, for e= 90° the sum ui(x, 0) +wf(x, 0) yields the reflection
coefficient by Fredricks and Knopoff [8] for a Rayleigh wave normally incident on a rigid
smooth barrier loading half of the surface of a half-space.
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A6crpaKT-Hccne,a.eTCSI oT06palKeHl{e cB06o.nHol:( nosepxHocTHOH BOJlHbl PeJleSl OT Kpall nonynJIOCKOH
ll.\enH, B HeOrpaHH'IeHHOM H30TponHoM ynpyroM Mene. TapMoHH'lecKaSl no BpeMeHH, nosepxHocTHaSl
BonHa, pacnpOCTpaHlilOmaSlcSI no nosepxHocTH menH, KOCO HanpaBneHa Ha KpalO TaK, 'ITO 3a.na'la
OKa3bIBaeTcSl TpexMepHoit. TIpHMeHeHHe 3a.na'lH B nepeMemeHHlIX CBO.nHT peweHHe npo6neMbI K pemeHHIO
HHTerpaJIbHOrO ypaBHeHHlI. 3TO ypaBHeHHe pewaeTcli C nOMOll.\blO MeTo.noB npeo6pa30BaHHlI flanJIaca
H MeTo.na BHHepa-Xoncl>a. TIpeo6pa30BaHHoe nepeMell.\eHHe HMeeT npoeToit nonlOc, COOTBecTBylOmHH
oT06palKeHHbIM nOBepXHOCTHbIM BonHaM. Onpe.neJllllOTCll BbI'leTbI. TIo,a.C'lKTaHO 'lHCneHHO aMnnHTy.nbl
H cl>a3bI oTo6palKeHHbIX, nosepxHocTHbIX BOnH Ha .nBYX CTOpOHax wenH H npe.nCTaBJlllIOTCli rpacl>H'lecKH,
B 3aBHcHMOCTH OT yrna na na.neHHll. YKa3bIBaeTSI, TaKlKe, Ha rpacl>KKax 3Hepnfll oTo6palKeHHbIX BonH.


